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ABSTRACT

The restoration of images by nonharmonic analysildA) algorithm is an active field of research anttls
algorithms are, in fact, now widely used. Convemtiomethods usually apply cannot handle strongenaisll due to the
inherent contradiction between sharpening and d&ngp To solve this issue here, we propose a NHéthod to
overcome this limitation by using signal predictibased on the NHA method proposed. In this papepnesent NHA
analysis algorithm for restoration of a picture ethihas been corrupted by mild blur, and strongeloiperiments
illustrate that compared with other sharpening aaphes; our method can produce state of the artsamder practical

imaging conditions.
KEYWORDS: De-Noising, Signal Prediction, Nonharmonic, Shaipgn
INTRODUCTION

Blur & noise are the common issues that exist gitaliimaging. An important camera setting thabsgly affects
these distortions, & that needs to be carefullysigid, is the aperture size. If the exposure tgrfixéd, a massive aperture
will increase the signal to noise ratio (SNR), mehite reducing the depth of field (DOF) & thus iresing the
out-of-focus blur, which eliminates high-frequermarts of the picture. On the other hand, a tinytape will alleviate the
blur but increase the noise level [17, 4]. Noiseyragen be suppressed by using longer exposure botepf work, this
may cause motion (either camera motion or objectianp blur that is even more difficult to remove, [24, 1].
Simultaneously, limited accuracy of auto-focus egst & low light condition may add additional blur ise in to the
picture. So in actual applications, such as consudigital imaging, it is common to record weaklyubed
& comparatively noisy images. In general, there&sible types of techniques that can enhance #rersdss of an picture
under such conditions. group of methods is blindeti@olution. In recent years, several blind-decdui@n algorithms
have been proposed to restore images degradeduby{3l13, 5]. These algorithms are usually dedigneder the
assumption that the point spread function (PSHBlwafis spatially invariant, & that noise is vergak or virtually absent.
Regrettably, even when dealing with weakly bluriredges, the presence of noise can be a signifisané for the state of
the art deblurring algorithms. Think about the papuwalgorithms under the maximum a-posteriori (MAEStimation
framework, where total variation (TV) or other sgmmpicture priors are often used [8, 13]. Theselaggation terms
concentrate on smoothing pixels with median orlelitgradient values, leaving high-value gradientgsprved.
They perform as smoothing filter assuming a worttevinodel for the locally treated pixels withoutntking about local
picture characteristics. Although they can provaaice balance between high frequency content ra&io & noise
suppression, the noise effect may still stay indbgput knowledge, & corrupt the smoothness ofnatsbject structure.

On the other hand, space invariance of the PSF miutelsold in general for out-of-focus blur since tcene depth varies
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spatially [7]. Besides, high computational cost asother significant shortcoming of deblurring ammioes [2].
The algorithm proposed in [2] incorporates a deangisilter to smooth the input picture, & employlgpping process to
remove overshoot. However, this process smoothestlyntow-frequency parts of the input picture, aadhances
unfiltered high-frequency part directly, which agamplifies noise. Meanwhile the clipping processyraffect structure
smoothness generating artifacts for heavily noegyians. Another sharpening algorithm called adaphilateral filter
(ABF) can accomplish lovely noise suppression [PBF was designed by introducing an offset in te Hilateral filter,
which switches the behavior of the filter from dising to edge sharpening according to local pictsticture.
This method focuses on enhancing the slope of edmasts sharpening strength for texture or otpieture details is
limited. In this paper a nonharmonic analysis (NH#dcess is proposed for weakly blurred and stgongisy images.
The key idea behind this approach is to extracteobrspectra, irrespective of the window functiand its frequency
resolution is less than that of the discrete Fouransform, so that denoising and sharpening pseEsecan be effectively
combined together[21].The remainder of this papeprganized as follows. Section Il report the psgzbalgorithm,
In this section is followed by Weakly Blurred antrddigly Noisy Images for Restoration In Section they show the

restoration results for actual images, Finally,tlBeclV concludes the paper.
NHA Algorithm

In this section, we describe the NHA algorithm. THwurier transform (FT), which has been used Fegudency

analysis can be represented as follows:
X(F) = [, x(t) e~ /2t )

Where T is analysis window length. Equation (1) is solved fletermining the Fourier coefficients. This is
because, FT assumes that a complex periodic sigodé! is the sum of sine waves, and ask for Foeoefficients based
on the product fellow sine wave and integral equmatin short FT is used for analyzing a complefsyiodic signal in an
analysis windowl. Therefore, analysis results depend on the winigowyth, and errors frequently occur in the analgs$is
non-harmonic signal frequencies. Moreover, if thagth of the analysis window is decreased to irserethe time
resolution, the frequency resolution also decreables discredited version of the FT is the DFT #mal algorithm often
used to compute the DFT is the fast Fourier transf-FT). NHA estimates the Fourier coefficientsasguming a signal
model similar to FT. However, the NHA estimates Huairier coefficients by performing shape fittinfgtloe target signal
and signal model using the least squares methatlidrway, NHA can reduce the effect of the shapkegth of analysis
window and can predict surrounding information franpart of the signal. The 2D basis sinusoidal rhaetgnal for
2D NHA can be expressed as follows:

I(ny,n,) = Acos <2n (;2 n, + Enz + (f))) )

Xs f)’s

Wheren; andn, are the pixel numbers aifg andf, are the sampling frequencies, givenfas= 1/Ax and
fy, = 1/Ay.Here,x andy are the two spatial dimensions. To minimize the sdirthe squares of the differences between

the original signal and the 2D sinusoidal model sigfiathe spatial frequencigs anq?y, amplituded , and initial phaseé

are calculated as follows

F(A Ffyp ) = 5 Eniso Zni {1 () = Ty, o)) 3
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Wherel is the original 2D signal antl,andN, are the image dimension. By using the nonlinearaggn, the
2D DFT converges to the appropriate initial valﬁeﬁ,f; and ¢ , from which the optimal solution is obtained bynggi
the steepest descent method for 2D NHA. By consigdg3) as the function, this nonlinear problent@verted into a
minimization problem and, ., fyk and ¢, are determined using the steepest descent methotitain the following

expressions:

A N 3

fewrs = fow— w3 (4)
» S aF

fyk+1 = fyk_ Uka (5)
~ ~ a

P41 = i — Hkﬁ- (6)

The above equations are expressed as follows:
or = aF(Ak'ka'fyk'ésk)- (7)

Equations (4)—(6) are used for the steepest deswetitod, wherek is a weighting coefficient obtained bie
retardation method and takes a value between Olamdhen converting the cost functions calculatedrégurrence
formulas into amonotonically increasing sequencextN if ka,fyk,and ¢, are known, themd can be uniquely

determined. The following formula is applied to sad to converge:

A A aF
Agyy = A— Hka- (8)
This series of calculations is repeated in ordecauseﬁik,ka,fyk,and ¢, to converge with high accuracy.
Although the steepest descent method causes valgesiverge over a comparatively wide range, periiog a series of
signal operations does not ensure sufficient acyuead is, moreover, time consuming. Instead, NiAieves highly
accurate conversion by using Newton’s method dftersteepest descent method. The following recoeréormulas are

used in Newton’s method:

ka+1= ka_vl_k|a.32 B 9
fyk+1= fyk—v]—k|/31a/33| (10)
$k+1 = (Z;k - v]_k | By B al (11)
Where
r 0F OF OF
dfy 0fy 0¢
r |62F 0°F 0°F
P = o7z o707, 909
gr = 0°F 0°F 0°F |
2 7 |af0f, 0f7 0f,00]
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The above equations can be rewritten as follows:
azF:azF(Ak'ka'fyk'éSk) (12)

Here, vy, like uk, is a weighting coefficient obtained by using tetardation method. Equations (9), (10) and (11)
are constructed to converge by applying (8) in amaa similar to that used in the steepest desceitftod, and the series
of calculations is repeated. In other words, tlegdiency parameters are rapidly estimated to adeghee of accuracy by
using a hybrid process that combines the steepassedt method with Newton’s method. Even when aasigomprises
several sinusoidal waves, the spectral parametansbe approximated by sequential reduction. Hexel,(h,,n,) be
expressed as the sumlosinusoidal waves as follows:

I(ny,ny) = Z%=1 i(npnz) (13)
Wherel is wave number. According to Parseval’s theorem,dhginal signal frequencieg, and f,,, and the

model signal frequencies,f, andfy, do not match any of thef,andf, respectively. That Iis,

if (fu # f) N (fy # f,,) for any, then
F(A fofy ®) =A% + 3i, A7 (14)

In addition, iff, , ,,,and ¢ matchfy,, f,; and ¢,, respectively, then

F(A' fx' fy ’ (is ) = (A - An)z + Z%:L#n Alz (15)

If both 4,, and A match, then the frequency component for the estichapectrum can be completely removed
from the original signal. Therefore, the possiildf obtaining an optimum solution is frequencyépéndent and the
method can even be applied to a signal consistirsgeeral sinusoidal waves by the process of sa@lemd individual
estimation from the original signal In other words, even when the original sighas a composite sinusoidal wave,
several sinusoidal waves can be extracted usiimilasprocessing approach similar to that for sagial residual signals.
If the frequencies of two spectra are similar, thes likely that an error will occur for the sameason that such errors
occur. In general, the frequency spectrum than&uded in the image is a predominantly low-frequyespectrum.
In other words, it can be said that improvementhaf low-frequency resolution is directly linked ¢dficient image
representation. NHA has a very high frequency rg&mi, and it can represent the images by using few spectral.
The side lobes occur in FFT, but not in NHA [21heTefore, it is not necessary to consider the Isides in NHA, and the
influence of noise is suppressed. A representaismple is given in Figure 1, where it can be dbhan the proposed

strategy successfully suppressed basically alhtise.
To summarize, the overall algorithm can be desdrémefollows:
Algorithm

Algorithm for Color Image Restoration consist ofldaing steps
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« Given RGB imagd(n,,n,), transfer it intof(n,,n,) , to minimize the sum of the square of the diffiee

between the original imagén,, n,) andl(n,,n,) .
* Obtain the NHA basis function depending on pixduea of input image (2).
»  Subtract the basis function values from originahdgm value (3).
» Again obtain basis function from modified image doltbw step no. 3
» Perform step no 4 recursively to get the finer itesu
EXPERIMENTAL RESULTS

To show the effectiveness of the proposed algorithentest it on several real images that suffemfraoild blur
and strong noise. Several leading adaptive shargeapproaches (Adaptive UM [11], Constrained UMdaH ABF [18])
are also applied as comparison. One set of reardtgiven in Figure 2, where (a) which containsrgirshot noise and
mild out of- focus blur. In (b) the Adaptive UM mlaced result with sharpened edges and detail,Heunoise is also
strongly amplified. A similar situation happensGonstrained UM in (c). Although it did not signidiotly raise the noise
lever, the high-frequency noise artifacts can tsdleabserved especially in the flat areas. In &BF provides an image
with the noise sufficiently suppressed, since ¢oiporates bilateral filter. It sharpens edges wmrlt its sharpening effect
in detail regions is limited. In (e), our proposgdorithm results are given in Figure 1, which sgsged both blur and
noise. The surface of the doll and the backgrourdvery clean, while the restored details are astlas good as
(b) and (c).

CONCLUSIONS

In this paper, we developed a nonharmonic anabjgisrithm. This algorithm can capture local pictsteicture
and thus effectively merge denoising and sharpemoggther. Experiments show that the proposed appracan
effectively restore images distorted by weak blad astrong noise. Compared with other state of thieadaptive
sharpening methods, it handles both denoising dradpsning tasks simultaneously well, and can removise.

This algorithm is also computationally cheap, siitég not iterative.
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APPENDICES

(a) Origindmage (b) Magnitude Image (c)Restoredimage

Figure 1: Examplesof Nonharmonic Restoration Using OurProposed Me¢hod

(a) Original Image (bAdaptive UM  (c) Constrained UM (d) ABF (e) Proposed Method

Figure 2: Experimental Results: (3 Input Image; (b) Result of Adaptive UM [11]; (9 Result cf Constrained UM [2];
(d) Result cf ABF [18]; (e) Result of Proposed Method
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